

Time \& Time Measurement

OPCUG \& PATACS

October 21, 2023
Lorrin R. Garson

Disclaimers

- Your speaker is a physics dilettante
- Simplification of necessity leads to some inaccuracies-i.e., not the complete picture
- Physics without mathematics is like spaghetti without sauce

Outline

- Definition of time
- Some ancient clocks
- Disaster at sea一the longitude problem
- Examples of historical timepieces
- Atomic clocks

Outline (cont.)

- So, you want to buy a watch?
- Definition of a second
- The speed of light
- Global Navigation Satellite Systems (GNSS)
- Time dilation
- Suggested reading

MWhitaty
 butófolvathb ta explairicito

Augustine of Hippo
$354-430$ AD

Definition of Time

- "Of, relating to, or showing the passage of time" from Dictionary.com
- "The thing that is measured as seconds, minutes, hours, days, years, etc." from The Britannica Dictionary

Definition of Time (cont.)

- "The continued sequence of existence and events that occurs in an apparently irreversible succession from the past, through the present, into the future" from Wikipedia

So, What is Time?

- The concept of time is challengingly complex: © \checkmark Time is relative not absolute
\checkmark Time is influenced by speed
\checkmark Time is influenced by gravity
- This impacts our daily lives

Stay tuned for details...

Time Requires Change

- Days, months, seasons, years, lifetimes, etc.
- Speed (miles/hour)
- Stars' moving in the sky
- The moon circling the earth
- The earth circling the sun
- Tick-tock, tick-tock, tick-tock

Calendars

- Civil Calendars
\checkmark Gregorian—accepted worldwide, the de facto standard
\checkmark Chinese
\checkmark Iranian (Persian)
- Religious
\checkmark Eastern/Orthodox calendar—Julian calendar
\checkmark Islamic (Hijri) calendar-a lunar calendar*
\checkmark Hebrew/Jewish calendar—a lunar/solar calendar*
\checkmark Buddhist calendar
$\checkmark 6$ Hindu calendars

The Universal Calendar O

The Gregorian Calendar*

- A year is the time taken by the earth to make one revolution around the sun
$\checkmark 365$ days a year-not exactly
$\checkmark 365.25$ days a year-not exactly
\checkmark Average number of days in a year 365.2425
$\checkmark 97$ out of 400 years are leap years, not 100
* Also applies to the Julian calendar

Meteorological Seasons

- Four seasons of three months each:
\checkmark Spring: March 1 to May 31
\checkmark Summer: June 1 to August 31
\checkmark Fall: September 1 to November 30
\checkmark Winter: December 1 to February 28/29

Astronomical Seasons

- Spring
\checkmark Begins on the spring equinox, March $20^{\text {th }}$ *
- Summer
\checkmark Begins on the summer solstice, June $21^{\text {st }}$ *
- Fall
\checkmark Begins on the fall equinox, September $23^{\text {rd }} *$
- Winter
\checkmark Begins on the winter solstice, December $21^{\text {st }} *$
* For 2023. The date varies from year to year

Equinoxes and Solstices

- Equinoxes-day and night are equally long
- Solstices-shortest and longest days of the year

Newgrange

Northeast Ireland

Stonehenge (3000-2500 BC)

Modern day Druids celebrating the summer solstice

On the summer solstice, when the sun rises, the first rays shine into the heart of Stonehenge

Pyramid of Kukulkán at Chichén Itzá* ©

* Yucatan, Mexico

Built between $8^{\text {th }}$ and $12^{\text {th }}$ centuries AD

The Months

- January-31 days
- February-28 or 29 days
- March-31 days
- April-30 days
- May-31 days
- June-30 days
- July-31 days
- August-31 days
- September-30 days
- October-31 days
- November-30 days
- December-31 days

Time Related Questions

- What time is it?
- How fast are we going? $S=\frac{\partial D}{\partial T}$
- How can we find out where we are?
- What is the length of an American foot?

Huh?
Yes, a foot is related to time

Sundial

Earliest known: ~1500 BC in Egypt

Egyptian Karnak Clepsydra (Water Clock)

1391-1353 BC

Roman Water Clock

Modern Water Clock

 by Bernard GittonTime Displayed: 4:06

Salisbury Cathedral
 Clock ~1386

"Oldest" working mechanical clock

Time announced by a Bell—no dial

City Hall Clock Tower Passau, Bavaria
$14^{\text {th }}$ Century

"First" Spring Driven Mechanical Clock

 ~1430Given to Philip the Good Duke of Burgundy

Christiaan Huygens patented first pendulum clock June 16， 1657 昷昷昷

Huygens presents a pendulum clock to Louis XIV*

Grandfather (Pendulum) Clocks

Popular 1940s-50s Electric Clock

More accurate than quartz clocks
over a period of months

Isles of Scilly, England

$\rightarrow 0$

Isles of Scilly, England

Disaster at Sea

- October 22, 1707
\checkmark Four Royal Navy ships ran into the Isles of Scilly and sunk
$\checkmark 1,400$ to 2,000 lives were lost
\checkmark Cause—bad weather and they didn't know where they were, specifically their longitude
- 1714—British Parliament passed the Longitude Act
\checkmark For finding a good method to determine longitude at sea
\checkmark Reward: $£ 20,000$ ($\$ 4.37$ million in 2023 dollars)

John Harrison's H1 1735

John Harrison's H2 1737-1739

John Harrison's H4 Marine Chronometer 1759

Accuracy -0.11 s/day
Voyage to Jamaica in 1762 corrected position was off

A Harrison Clock

~1722

Clock made of wood (oak and lignum vitae) and still running!

Burgess Clock B

1975 clock based on Harrison's principles

In 2014 the clock lost
0.625 seconds in 100 days 9

Royal Observatory Greenwich

Big Ben* (1859)이잉

Weight 5 tons
 $\pm 2 \mathrm{sec} /$ week

* Renamed "Elizabeth Tower Clock" in 2012

Shortt Pendulum Clock

Most accurate pendulum clock invented $\pm 1 \mathrm{sec} /$ year

At NIST Museum in

 Gaithersburg
Ulysse Nardin Ship's Chronometer

Gimballed

Accuracy - 4/+6 s/day Mechanical movement Price: \$2,350

Quartz $\left(\mathrm{SiO}_{2}\right)$ Crystal Resonators

Radio Clocks—NOT Atomic Clocks

+1 color/pattern
La Crosse Technology Atomic Analog Wall Clock, 10", Silver
$4.6 \div \vee(4.8 \mathrm{~K}+)$
500+ bought in past month
${ }^{\$} 22^{49}$ List: 477.95
\checkmark prime One-Day
FREE delivery Tomorrow, Sep 14
More Buying Choices
\$19.99 (16 used \& new offers)

+1 color/pattern
SHARP Atomic Clock - Never Needs
Setting! - Jumbo 3" Easy to Read Numbers

- Indoor/Outdoor Temperature Display
with Wireless Outdoor Sensor - Gloss Black

$$
4.2 \star \sim(2.3 \mathrm{~K}+)
$$

800+ bought in past month
\$ 32^{99} List: $\$ 5.9$
Radio Signal
\checkmark prime One-Day
FREE delivery Tomorrow, Sep 14

Atomic or Nuclear Anything

RADIOACTVE

 fextebyexasMRI Machine (Medical Resonance Imaging)
NMR (Nuclear Magnetic Resonance) technology

NIST-F2 Atomic Clock

History of Atomic Clocks

- 1949—first atomic clock
- 1952—first Cs clock (NBS-1)
- 1958—first commercial atomic clock, \$202,000*
- 1968—NBS-4 Cs clock used into the 1990s
- 1975-NBS-6 Cs clock ± 1 sec in 300,000 years
* 2023 dollars

NISTS' Fountain Cesium Clocks

- NIST-F1 in service 1999 to 2013
$\checkmark \pm 1 \mathrm{sec}$ in 20 million years
- NIST-F2 in service 2013 to present $\checkmark \pm 1$ sec in 300 million years
- NIST-F3 under development
- NIST-F4 under evaluation

How Do Atomic Clocks Work?

111 Hz
(or cps)

9,192,631,770 Hz (or cps)

The NIST-F2 Cesium Atomic Clock* ${ }^{0}$

* AKA NIST-F2 Cesium Fountain Atomic Clock

NIST's Miniature Atomic Clock © (next to a coffee bean)

NIST-F2—A Very Accurate Clock

± 1 second in 300 million years

JILA Strontium Atomic Clock*

* JILA = Joint Institute of the University of Colorado and NIST For detailed information see

JILA Sr Atomic Clock—An
 Extremely Accurate Clock

± 1 second in

15 billion years

Cs Atomic Clocks for Sale

- Axtal ${ }^{\mathbf{8}}$
- Brandywine Communications
- Microchip Technology, Inc $\mathbf{8}$

Cs Atomic Wristwatch 이앙

~ $\$ 6,000$

Typical Accuracy of Clocks

Time Keeper	Accuracy	Tick-Tock

UTC-Coordinated Universal Time

- Used worldwide for civil time (including the US)
- Time established via the synchronization of 400 atomic clocks
- UTC is, in effect, the replacement for GMT
- For more information see 日昷

So, you want to buy a watch?

How Thick Is Your Wallet?

Richard Mille Wristwatch

1.75 mm thick (or 0.0689")

Price $\$ 1.88$ million*

* Must be a Ferrari car owner to qualify for purchase

Rolex Daytona

 Accuracy $\pm 2 \mathrm{~s} /$ day
\$75,000

A Used Rolex Daytona

Sold at auction $\$ 17.8$ million Belonged to Paul Newman

Now for Us Cheapskates!

My Everyday Watch

- Purchased 2008
- Price \$15 to \$18
- Quartz movement
- Accuracy?
\checkmark Minus 6 seconds/year*

* Minus 0.0164 seconds/day

Why Not Decimal Time?

- 10 hours/day
- 100 minutes/hour
- 100 seconds/minute
- Promoted in France in 1792 during the French Revolution

French decimal clock from the time of the French Revolution

The large dial shows the ten hours of the decimal day In Arabic numerals

The small dial shows the two 12-hour periods of the standard 24-hour-day in Roman numerals

Flopped like an opera aria at a rock concert

What is a Second?

- 1 Mississippi
- 2 Mississippi
- 3 Mississippi
- 4 Mississippi
- 5 Mississippi
- 6 Mississippi

What is a Second? (cont.)

- The SI definition of time (International System of Units, the modern metric system) is...
- The second is equal to the duration of 9,192,631,770 periods of radiation corresponding to the transition between hyperfine levels of the unperturbed ground state of the ${ }^{133} \mathrm{Cs}$ atom

Huh?

- For more information see 0

What is a Second? (cont.)

- Zapped with a laser, the single electron in a cesium atom's outermost shell will cycle back and forth between two states - known as a hyperfine transition
\checkmark This transition can be very accurately neasured \checkmark This transition never changes-it's immutable Laser light tick-tock tick-tock

Speed of Light

- 299,792,458 m/s (~300,000,000 m/s)
- 299,792.458 km/s (~300,000 km/s)
- $186,282.397 \mathrm{mi} / \mathrm{s}(\sim 186,000 \mathrm{mi} / \mathrm{s})$

That's fast!
Patience, this is relevant

History: Speed of Light Measurements

<1638	Galileo, covered lanterns	inconclusive ${ }^{[118][119][120]: 1252[N o t e ~ 15] ~}$	
<1667	Accademia del Cimento, covered lanterns	inconclusive ${ }^{[120]: 1253[121]}$	
1675	Rømer and Huygens, moons of Jupiter	$220000^{[94][122]}$	-27% error
1729	James Bradley, aberration of light	$301000^{[104]}$	$+0.40 \%$ error
1849	Hippolyte Fizeau, toothed wheel	$315000^{[104]}$	$+5.1 \%$ error
1862	Léon Foucault, rotating mirror	$298000 \pm 500^{[104]}$	-0.60% error
1907	Rosa and Dorsey, EM constants	$299710 \pm 0^{[108][109]}$	-280 ppm error
1926	Albert A. Michelson, rotating mirror	$299796 \pm 4^{[123]}$	+12 ppm error
1950	Essen and Gordon-Smith, cavity resonator	$299792.5 \pm 3.0^{[111]}$	+0.14 ppm error
1958	K.D. Froome, radio interferometry	$299792.50 \pm 0.10^{[115]}$	+0.14 ppm error
1972	Evenson et al., laser interferometry	$299792.4562 \pm 0.0011^{[117]}$	-0.006 ppm error
1983	17th CGPM, definition of the metre	299792.458 (exact $^{[92]}$	exact, as defined

Speed of Light in Translucent Substances

- The speed of light in a vacuum is $\sim 300,000 \mathrm{~km} / \mathrm{s}$
 Water: $\sim 225,000 \mathrm{~km} / \mathrm{s}$

Glass: $\sim 200,000 \mathrm{~km} / \mathrm{s}$

Diamond: ~125,000 km/s

When the light exits a translucent substance its speed returns to ~300,000 km/s

For Perfectionists

- Speed of light in a vacuum: 299,792,458 m/s
- Speed of light in the atmosphere: 299,702,547 m/s
- In the atmosphere light moves 1.0003 times slower (i.e., $299,792,458 \div 1.0003=299,702,547$)

Kitchen Physics

Determining the Speed of Light

Kitchen Physics (cont.)

Determining the Speed of Light

- Information needed:
$\checkmark 2.54 \mathrm{~cm}=1$ inch
\checkmark Frequency of the microwave oven, typically 2450 MHz $\left(2450 \mathrm{MHz}=2450 \times 10^{6} \mathrm{~Hz}\right.$ or $\underline{2,450,000,000 \mathrm{~Hz})}$
- The formula $c=\lambda f \quad$ where...
$\checkmark c=$ the speed of light (m/s) (p.s. $c=\sim 300,000,000$)
$\checkmark \lambda=$ wavelength (m) [which you measure]
$\checkmark f=$ frequency (Hz)

And now, a minor distraction...

Length of a Meter

- The meter is defined in terms of the second and the speed of light
- Effective 1983, the meter is the length of the path travelled by light in a vacuum during a time interval of $\frac{1}{299792458}$ of a second

$$
299,792,458 \mathrm{~m} / \mathrm{s} \quad \frac{1}{299792458} \mathrm{~s} / \mathrm{m}
$$

The American Foot

- Metric Act of U.S. Congress 1866 0
\checkmark legally protected use of the metric system in commerce from lawsuit
\checkmark provide an official conversion table for U.S. customary units
- Since 1893 the American foot has been defined as $1200 / 3937^{\text {th }}$ of a meter, i.e., 1 ft ≈ 0.30480061 meter

Standards Used Worldwide SI Units 으으…

- The seven basic standards
\checkmark Length—meter (m)
\checkmark Time-second (s)
\checkmark Amount of substance-(mole)
\checkmark Electric Current-ampere (A)
\checkmark Temperature—kelvin (K)

\checkmark Luminous intensity—candela (cd)
\checkmark Mass—kilogram (kg)
- All based on natural phenomena and five fundamental constants*
* Planck's constant (h), Boltzmann's constant (k or k_{B}), Avogadro's number (N_{A}), speed of light (c) and charge on the electron (e)

Back to the subject!

Ever use...

Global Navigation Satellite Systems (GNSS)

- GPS (United States) 옵
\checkmark Operational 1995, military only
\checkmark Operational 1983, civilian use
- GLONASS (Russia); 1995 요
- BeiDou ["Big Dipper"] (China); 2020ㅇㅗㅛ
- Galileo (EU); 2023 8
- QZSS (Japan) -regional, global in development
- IRNSS (India))-regional, global in development

The American GPS System ©

- 38 satellites, 32 operational
\checkmark In orbit at an altitude of 12,552 miles
\checkmark Circle the earth at a speed of 8,724 miles/hour*
\checkmark Each satellite contains a synchronized atomic clock
* Two orbits per day

The American GPS System

- Each satellite transmits:
\checkmark The satellite's ID
\checkmark Orbital data for all the satellites
\checkmark Orbital information for that specific satellite
\checkmark Very precise time information for that satellite
- Signals from 4 satellites are needed for calculating*:
\checkmark Latitude and longitude
\checkmark Altitude
\checkmark (Time is given and synchronizes the GPS's quartz clock)
* The receiver (GPS) works by calculating the distance to 4+ satellites

Accuracy of Common GPS Devices

- Cars: $\pm 10-50$ feet
- Smartphones: ± 16 feet
- Handheld GPS units: ± 10 feet
- U.S. Military systems ± 3 feet* (?)
- Real-Time Kinematic (RTK) GPS systems ± 1 inch
* Corrections made to account for the speed of light in the atmosphere

Things now get

Unintuitive

Time Dilatione

- Time Dilation is the difference in elapsed time as measured by two atomic clocks, one on earth-the other in a satellite (clocks appear to be out of sync):
\checkmark The clocks will show different times due to a difference in speed between the clocks (Einstein's Special Relativity)

and

\checkmark The clocks will show different times due to a difference in gravitational potential between the clocks' locations (Einstein's General Relativity)

Time Dilation (cont.)

- Consider a clock in a satellite circling the earth 12,552 miles above the earth and another clock on the earth:
\checkmark due to speed of the satellite (8,724 miles/hour), its clock will lose 7.27 microseconds* each day
\checkmark due to the lower gravitational potential of the clock in the satellite, its clock will gain 45.61 microseconds* each day
\checkmark net effect, the clock on the satellite will gain 38.34 microseconds each day-relative to the clock on earth
* 1 second $=1,000,000$ microseconds

Red ball has the clock on the satellite
 Blue ball is where the clock on earth is

Notice the clock on the satellite (red) runs slower-gaining $38.62 \mu \mathrm{~s} / \mathrm{day}$

Time Dilation Formula-Speed Effect

Comparing two clocks: one on earth (at rest) the other (on the satellite) moving relative to the one on earth

> Where:
> Δt is the time interval v is the speed of the satellite
> c is the speed of light
> Δt^{\prime} is the relative time
> $\Delta t^{\prime}-\Delta t$ is the amount of time dilation

For a time dilation calculator see

Time Dilation FormulaGravitational Effect

$\Delta t^{\prime}=\Delta t \sqrt{1-\frac{2 G M}{r c^{2}}}$

Where:
$\Delta \mathrm{t}^{\prime}=$ The change in time in the gravitationally influenced reference frame
$\Delta t=$ The change in time in a reference frame an infinite distance from any mass (a "standard" hour)
$\mathrm{c}=$ The speed of light $299,792,458 \mathrm{~km} / \mathrm{s}$
$\mathrm{G}=$ The gravitational constant $\mathrm{G}=6.6743 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
$\mathrm{M}=$ The mass of the object being approached (such as Earth)
$\mathrm{r}=$ The distance from the object being approached

For a time dilation calculator go to Uart

Comparing two clocks: One on earth
 The other on a satellite

Without Time Dilation

 Correction- A GPS location would be meaningless after a several minutes
- The error in positioning would accumulate to about ± 6 to 12 miles each day
OR
- ± 40 to 90 feet each minute
- ± 200 to 450 feet in five minutes

St. Lawrence River near Dorval

GPS

Information About Atomic Clocks

- From Wikipedia 8
- NIST's Cesium Fountain Atomic Clocks $\mathbf{8}$
- From NASA
- How atomic clocks work $\boldsymbol{\theta}$
- MIT News
- Atomic clocks and astronomy 0 日

Suggested Reading

- Longitude by Dava Sobel
- A Brief History of Time Keeping by Chad Orzel
- The Network of Time by Alon Halperin
- Why Time Flies: A Mostly Scientific Investigation by Alan Burdick
- The Order of Time by Carlo Rovelli

All Done!

Thanks for your attention

